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ABSTIiACT

Cosmic strings are linear topological defect s that are predicted by some grand uni-

fied theories to form during a spontaneous syrunetry breaking phase transition in the

early universe. They are the basis for the only theories of galaxy formation aside from

quantum fluctuations from inflation that are bssed on fundamental physics. In contrast

to inflation, they can also be observed directly through gravitational lensing and their

characteristic microwave background cuisotropy. It has recently been discovered by F.

Bouchet and myself that details of cosmic stri::lg evolution are very different from the

so-called "standard model" that has been assumed in most of the string induced galaxy

formation calculations. Therefore, the details ,,f galaxy formation in the cosmic string

models are currently very uncertain.
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Introduction

The development of grand unified theories in recent years has generated a wealth

of new ideas to be exploited by cosmologists. One of the most exciting developments

has been proposal of two separate mechanisms to generate the primordial density fluc-

tuations: quantum fluctuations from inflation and cosmic strings. 1 Inflation induced

adiabatic fluctuations have been investigated in great detail. Many variations of this

model have been ruled out, but the version _,_-ith cold dark matter and biasing (i.e.

galv0des only form at high peaks in 6p/p) has been fairly successful. 2 This model is

currently quite popular, but recent observatio:_s indicating large scale bulk motions s

and very early galaxy formation 4,s seem to contradict the predictions of this theory.

In contrast to the adiabatic fluctuations pxoduced by inflation, the study of grav-

itational accretion about cosmic string induced fluctuations is still in its infancy. (I

will not discuss the recent proposal by Ostrike:, Thompson, and Witten 6 that super-

conducting cosmic strings might be the seeds for explosive galaxy formation.) Some
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preliminary work has been done, but it has not been sufficient to rule out either hot

dark matter, La cold dark matter 9 or just plain baryons in combination with strings.

In fact, most of this work has been based on the heuristic "standard model" for string

evolution 10 which is (as we shall see) inconsistent with the most recent results from

numerical simulations of cosmic string evolution. 11 In fact, it is beginning to seem that

reliable predictions for galaxy formation with cosmic strings will only be possible when

cosmic string evolution codes are combined with cosmological n-body codes.

A major distinction between cosmic strings and inflation is that cosmic strings,

if they exist with sui_cient mass to produce galaxies, should be directly observable.

Cosmic strings should produce detectable anisotropies in the microwave background

radiation, and should upon occasion serve as a gravitational lens for distant galaxies or

quasars. Furthermore, there are particular details of both the microwave background

anisotropy and gravitational lensing that are unique to strings. These "stringy" signa-

ture should allow strings to be discovered if they exist or be ruled out if they don't.

I will now proceed to review the properties of cosmic strings that are of interest

to astrophysicists. A discussion of the formation of topological defects via the Kibble

mechanism has been given in Dr. Kolb's lecture. The most important implication of

the Kibble mechanism is that a string producing phase transition will produce a large

density of infinitely long strings. 12 The simplest theory with cosmic strings is the abelian

Higgs model described by the Lagrangian

1 2m2_b'_b - _ (_*_) 2 (I)f.=-IF.vF"V + _ l(O.-ieA.)@l _ +

The solution to (1) describing a straight cosmic string in the z direction has the form:

= _(p)e is and As = A(p) in cylindrical coordinates (p, 8, z). Since this solution is

independent of t and z the solution must be invariant under boosts along the string's

direction (rotations in the t- z plane). This implies that Tzz = -Tu: the string tension

equals the mass per unit length of the string. This means that the characteristic velocity

for a curved piece of string is close to the speed of light.

Since string loops oscillate at relativistic velocities, they are rather ei_cient radia-

tors of gravitational radiation. The gravitational radiation rate for various string loop

trajectories has been calculated to be 13'14

P= G. (2)

where G is Newton's constant, ft is the string tension, and 7 is a constant (typically
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50-100) which depends on the loop's shape but not it's size. (2) implies that a loop of

circumference go will have a lifetime of £o/("Gp) _ 104g0 for G_ ,,_ 10 -s (the preferred

value).

The only time when the details of the ft_ndamental field theory play an important

role in the astrophysics of cosmic strings i; when two strings cross. There are two

possibilities: either the strings pass through each other and continue on their way,

or they intercommute (break and reconnect the other way). This question can be

answered by studying the collision of two st_ ings as a problem in classical field theory.

This question has been investigated numeric_dly by Shellard is and Matzner is for the

simplest field theories with strings. They have found that intercommutation occurs in

almost in every case. Only when the relative velocity between the strings is very large

is there some chance that intercommutation will not occur.

The motion of cosmic strings is describec by the Nambu Action which leads to the

following equation of motion 17

a'(&2 _ dx2)):
in a Friedrr_an-Robertson-Walker background (ds 2 =

in the gauge where _k. x t = 0 (i.e. the velodty is perpendicular to the string). Dots

(3)

denote derivatives with respect to conformal time r, primes denote partial derivatives

with respect to the string length parameter ,r, and e = V/x'_/(1 -i2) (E = ttaf edtr

is thus the string energy). Eq. (3) can be used to determine how the energy density

of a cosmic string network will scale with the expansion when string interactions and

gravitational radiation are neglected:

_b. = --2 "-a(1 4 (v2)) p., (4)

where (v 2) is the mean velocity squared of the _tring network. Eq. (4) can be understood

by examining several special cases: If the str:ngs are straight and stationary, then the

string length grows as a while the volume grows as a 3 so that p, --_ a -2 which can also

be obtained by setting (v 2) = 0 in eq. (4). Similarly, if (v 2) = 1, then (4)implies that

ps "" a -4 just as we expect for ultrarelativistic matter. For a realistic string network,

we expect that (v 2) _ _ (this is an equality in minkowski space) so that p, --_ a -3. If

this were still true when the effects of string interactions and gravitational radiation are

included, then ps would soon come to domin_tte over the radiation density ending the

radiation dominated era prematurely.

3
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Instead of string domination, the combined effects of string interactions and grav-

itational radiation is supposed to allow string evolution to be described by a "scaling

solution" in which 9, _ _/t_ ("_ 1/a4 in the radiation dominated era and ,_ 1/a s in the

matter era). The only scale in such a scaling solution is the horizon size, so the string

network would look the same at any time during its evolution as long it is measured in

horizon sized units.
Source

Observable Consequences of Strings ..---_

The most interesting and unique of the ob- _

servable effects of cosmic strings are the result of
Light rays

their peculiar gravitational field. The space-time

in a universe containing only a single straight,

static string is locally flat everywhere outside
String i '

the string, but the effect of the high curvature

inside the string is to make the space conical. 1s'19

A circle drawn around the string will have a cir-

cumference of (27r -- 8_rG/_) x r (8rrGp __ 5 arc

seconds for G/_ _- 10-s). Figure 1 shows the

geometry of the 2 spacial dimensions transverse

to the string. The wedge is to be discarded and Observer

its boundaries are to be identified so that the 2

transverse dimensions form a cone. Figure 1

Fig. 1 shows how a cosmic string can serve as a gravitational lens with a light ray

passing through fiat space on either side of the string. If the string is very straight on

the scale of the impact parameters of the light rays, then the conical spacetime is a good

approximation to a curved string. In this case, we expect two identical images with a

separation of ,,0 47rG/_ _ 2.5 arc seconds (5 arc seconds times typical geometric and

relativistic factors). In the case of extended sources such as galaxies, it is possible that

only a fraction of the source will be lensed so that the images are not exactly identical.

In this case, the "fractional" image would have a sharp boundary at the string location.

Because strings are extended objects, we would also expect to see strong correlations

between the positions of lensed objects. In fact, with very deep plates in which the

density of galaxies is very high, it might well be possible to trace out the position of a

string from the pattern of gravitational lensing.

Recently, Cowie and Hu have have discovered a lens candidate z° that meets many of



OF PO0_ ........ ;'_-

the "stringy" criteria mentioned above. It is a group of 4-5 double gAla_es _thin a 30"

by 30" area on the sky. The members of each pair of images seem to be _u_ny

identical, and their separations are all between 2" and 2.5'.' One possible ditBculty

with the cosmic string interpretation of thi_, object is that the pairs seem to be badly

misaligned so that a rather convoluted loop o" string would be required to do the lensing.

However, it is known that string loops shot_ld not be very smooth, but whether they

tend to be convoluted enough to account fo=" Cowie and Hu's object is unclear. There

are several observations that are planned fox the near future in order to test the string

interpretation of this object. David Koo and I have proposed to take very much deeper

images of the same field in order to look for iaore distant galaxies or galaxy pairs in the

field. In principle with a deep enough imagt:, we should be able find enough unpaired

galaxies between the pairs to rule out the c(_smic string interpretation, or find enough

pairs to be able to trace out the string prot_e. In practice, this depends on how well

we can identify faint galaxy pairs. Cowie an,i Hu are planning to get better spectra of

some of the pairs in order to determine the velocity splitting between the pairs. For

physical pairs, we should expect the velocit_ splitting to be _ lOOkm/sec (the typical

orbital speed of galaxies) while the velocity splitting for string lensed pairs should be

,'_ 4zcG/_c _ lOkm/sec. Unfortunately, the _otational velocity in a spiral galaxy is also

lOOkm/sec, so if the slits of the spectrogra_)h are not properly aligned, a false velocity

splitting of -._ lOOkrn/sec may be observed. This situation would be greatly improved

if the observation could be done from the sp_Lce telescope.

Another interesting effect of the string's _-onical spacetime can be seen if the string

is moving (or if the light source and the observer are moving in the string's rest frame).

With the source and observer moving as sho_'n in Fig. 1, it is apparent that the length

of the light path on the right is decreasing with time. This is because the distance

between the source (or observer) and the su_ace of the excluded wedge is decreasing.

This causes the right hand light ray to be blue-shifted with respect to the left-hand

one. This is what can give rise to the possib:e _ lOkrn/sec velocity difference between

two images lensed by a string. A more interesting consequence is that it can induce

temperature discontinuities 21 of order AT/F ,.-, 87r(v/c)Gi.L ,-, 10 -5 in the microwave

background radiation pattern.

Fig. 2 shows the AT/T pattern generated by strings from a simulation of string

evolution by Francois Bouchet and myself. (The AT/T calculation was done in col-

laboration with Albert Stebbins.) The angular scale of the temperature map is 4.4 ° ×

V/1000/(1 + zt,) where zt, is the redshift of the surface of last scattering, zt, _, 1000 if



the universe does not become reionized after recombination, but zi, could be as small as

30 with reionization. Fig. 3 shows the strings that are responsible for the MBR fluctua-

tions in Fig. 2 i.e. all those on the past light cone of the observer. Careful comparison of

Figs. 2 and 3 will reveal that the sharp discontinuities in Fig. 2 all correspond to string

positions in Fig. 3. The converse of this last statement is false, however, because some of

the strings in Fig. 3 have little or no transverse motion and therefore do not contribute

to the anlsotropy. The rms of AT/T in Fig. 2 is 17Gp _ 2 x 10 -'_ which is not far

below current upper limits on AT/T. (The implied upper limit 22 on Gp is 5 × 10-6.)

Therefore it seems quite likely that the next generation of MBR anisotropy experiments

should be able to detect the anisotropy due to strings or put stringent upper limits

on the string parameter Gp. Once MBR snisotropies have been discovered, it will be

possible to check for the "stringy" features of the anlsotropy pattern: sharp jumps and

FiKure 2 Figure 3

broad plateaus in AT/T. This will, of course, require more sensitive detectors than

those required to be able to see the anisotropies.

Other observable effects of cosmic strings involve the gravitational radiation coming

from cosmic string loops. Primordial nucleosynthesis is sensitive to the total energy

density in 8ravitational radiation in much the same way it is sensitive to the number of

neutrino species.Gravitational radiation with periods of order one year will also act as a

source of noise for the timing of the millisecond pulsar by varying the distance between

the pulsar and earth. 2s These two effects are supposed to lead to limits on G/_ that are

competitive with the MBR limit of G_ < 5 x 10 -6 81yen above, but this is not really

the case because they depend on the distribution of and radiation rate from small string
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loops. Both of these are presently very unce:'taln. The MBR lindt,on the other hand,

depends only on the configuration of long strings which is known fairly well. Another

drawback of gravitational radiation is that it i)rovides no "stringy" signature in contrast

to MBR anisotropies and gravitational ]ensitg.

Perhaps the most interesting consequence of cosmic strings is that they may have

been responsible for the formation of galaxie:i and large scale structure. Before we can

discuss this further, however, we must turn t( the study of string evolution through nu-

merical simulations because the details of string evolution have important implications

for galaxy formation.

Numerical Simulation of" Cosmic Stxlng Evolution

The central concept in the study of stri.'ig evolution is the concept of a "scaling

solution. 17 " The cosmic string theories for _alaxy formation are all built around the

idea of a scaling solution, and they would fail if string evolution differed appreciably

from scaling. From a practical point of view, it would certainly be impossible to follow

string evolution with a numerical simulatio_L from the time when friction from the

surrounding gas becomes negligible (t ._ 10 -sl sec) until the present if the evolution was

not scale invariant. The most compelling rea_on why a scaling solution is necessary is

that analytic treatments of string evolution h_ve indicated that the only alternative to

the scaling solution in a radiation dominated aniverse is for P,/Prad to grow with time.

This will inevitably lead to a universe dominated by strings and their gravitational

radiation unless G_ <<: 10 -6.

Because all interest in cosmic strings res_ s on the existence of a scaling solution,

the primary aim of numerical simulations is to determine whether a scaling solution

actually exists. Once a scaling solution has b,:en established, the simulations can then

be used to study the details of the scaling solution because many of the observational

effects of strings (particularly galaxy formatioa) depend on these details.

Both the original cosmic string evolution code of Albrecht and Turok _6 and the

most recent one developed by Bouchet and myself 11 follow the same general procedure.

The initial conditions are generated following the procedure introduced by Vachaspati

and Vilenkin. _2 First, we randomly assign ph_:ses to the Higgs field (@) at the verticies

of a cubic lattice. The phases are assumed to vary in the minimal way between lattice

sites, and the strings are found by checking fi,r closed circuits on the lattice in which

the phase of _ varies by +27r. This gives us _ca initial string network that consists of

80% "infinite" strings (i.e. those that wrap ar, bund our periodic box at least once) and



20% closed loops. On scales much larger than the lattice spacing _0, our initial string

network should closely resemble the real initial state for strings, but on scales _ _0 it

is probably quite different. Fortunately we need not be concerned about this, because

our goal is to test for the scaling solution which should be reached (if it exists at all)

from any string configuration with a non-negligible population of infinite strings.

The numerical simulation of string evolution involves two basic processes: a) the

motion of strings as described by eq. (3), and b) the detection of string crossing and

intercommutation. Taken separately each of these procedures is relatively simple to

implement numerically. A modified leapfrog algorithm does quite well in simulating

string motion, and it is relatively straight forward to write down a geometric algorithm

that will determine when and where two string segments cross. (It is considerably more

diffcult to make this crossing detection algorithm efficient.)

The major difficultyencountered in the simulations occurs when we attempt to

evolve strings that have experienced one or more intercommutations. The problem is

that just after a stringhas undergone an intercommutation, there is a discontinuity in

both the tangent to the string(x') and the stringvelocity (i) at the point of intercom-

mutation. As the stringevolves,thisdiscontinuity splitsinto two discontinuitiesknown

as "kinks" which travelin opposite directionsalong the string. These "kinks" have a

very long lifetimeso that their decay isvirtuallyundetectable in the short time-scales

that are availablein numerical simulations. Therefore, it isquite desirable to be able

to evolve them properly. Unfortunately, the short wavelength Fourier modes associated

with these discontinuitiesare not simulated very well by most differencingschemes,

and itis necessary to use some sort of numerical diffusionin order to damp out short

wavelength instabilities.The drawback with this is that the numerical diffusionalso

tends to damp out the kinks. We have attempted to minimize the numerical diffusion

in our evolution scheme by invoking itonly when a short wavelength instabilitystarts

to develop. This works quite well when the density of kinks is small, but by the end of

some of our simulations there is one kink for every 5 string points. Therefore, we are

currently developing a new evolution scheme that can handle the kinks quite accurately

without any numerical diffusion.

Figure 4 shows a box half a horizon length on a side that was cut out of one of our

radiation era string simulations after an expansion by a factor of 3.4 from the initial

state. It is immediately clear from Fig. 4 that the majority of string length (actually

75%) is in the form of small loops in contrast to the initial state which had 80% infinite
uRIG_r, IAL P_,GE "IS
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strings. This is direct evidence that loop prc, duction does indeed transfer large amounts

of energy from the infinite string network to small loops as is required for a scaling

solution. This can be seen more quantitalively in Fig. 5 which shows plots of the

string energy density times t 2 as a function of time. In a scaling solution this quantity

should be constant. The dashed curve in Fig 5 shows the total energy density for all the

strings in one simulation while the solid curv_ shows the energy density for only the long

(E > 3.2_,c_) strings. Fig. 5 indicates that we have indeed reached a scaling solution

for the long strings but not for all the stri:tlgs in the box. In fact, it is not possible

to reach a scaling solution for the smallest loops given the nature of our simulations.

It is only when the horizon grows to be f_irly large that we even have resolution to

study loops that are very small compared to the horizon. Since this occurs near the end

of a run, the small loops do not have sufB_ent time to relax to their scaling solution

abundances. Once we do have this resolution, it will still take some time for the loops at

this scale to reach scaling. Fortunately, very small loops should have only a small effect

on the evolution of the long strings. This means that a scaling solution can indeed be

established fron_ this type of simulation.
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In order to confirm the theoretical prediction that the scaling solution is stable, we

have evolved configurations with larger and smaller initial horizon-size /ir0, i.e. with

different initial string energy densities. As is _hown in Fig. 6, confisurations with larger

initial energy densities chop off" many loops i:_l order to lower the energy density in long

strings 9Ls, while in string-poor confi_zrati.)ns more string-stretching and lower loop

production rate yield an energy density increase. In other words, the scaling solution

appears to be a stable fixed point, and perturbed configuions tend to relax to the scaling

9



solution.

We checkedthe dependenceof these results on our various numerical parameters,

in particular the size of the computation box to check for boundary efects, the density

of points to determine possible sampling effects, as well as the time step requirements,

or the value of our numerical lower cutoff'. None of those but the last matters. This

cutof is implemented by requiring a minimal number of points for a loop to be allowed

to chop of the network. We ran the simulation corresponding to the bottom curve of

Fig. 6 (H0 = 8.7_0) with various cutofs _ measured in units of the persistence length

of the initial lattice (_0)- The results are shown in Fig. 7. The solid curves have _ =

1, 0.5, 0.3, and 0.15 while the dashed curve is for )_ = 0.2. Although the results are

somewhat ambiguous, the curves do seem to be converging as 3, _ 0. Further analysis

of these runs reveals that the total energy production in small loops is independent of

)_. The diference between these runs is that with small _, the loops fragment more and

the reconnection of the smaller "child" loops is less important. Thus, loop production

is more efficient when _ is small. Because we believe that we understand the reason

for this cutof effect, we can extrapolate our results to the physical case (_ = 0) and

determine the scaling solution energy density for long strings: P_s = ¢,._d _(ct) -2, with

_rad = 20 + 10.
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Cosmic String Evolution and Galaxy Formation

The possibility that cosmic strings may serve as seeds for galaxy formation has

generated more interest than any of the other observable consequences of strings. Most

of the work that has already been done on this subject has assumed the so-ca_led

"standard model" of string evolution which holds that:
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1. The string network evolves according to a scaling solution with of order one long

string crossing each horizon volume.

2. The string network loses energy at a suf_cient rate to maintain the scaling solution

by chopping off horizon sized loops.

3. These horizon sized "parent loops" typically fragment into 10 smaller "child" loops

before stable non-self-intersecting are f{_und.

4. The initial velocities of these noninter_cting "child" loops are small enough so

that loop motion has little effect on locp correlations.

The numerical simulations of cosmic string evolution by Bouchet and myself n has

indicated that each of these statements is at _:east partially incorrect. We find that:

1. The string network does indeed evolve according to a scaling solution, but there

are roughly 10 or 20 long strings crossing each horizon volume.

2. The string network loses some energy b_, chopping off horizon sized loops, but at

least as much energy is lost by chopping off loops << than the horizon size.

-3. Those "parent loops" that are horizon dzed tend to fragment into >> 10 "child"

loops so that virtually all the non-self-ilttersecting loops are << than the horizon.

4. The initial velocities of the noninteracting "child" loops are _ 0.5c so that loop

motion tends to wash out the loop corrt lations.

The main distinctions between our results and the "standard scenario" can be seen

fairly easily from Fig. 4. There are certainly many different long strings crossing this

box, and the box is only half a horizon length on a side. Another striking feature of

Fig. 4 is that although the strings are reasom_bly straight on the scale of the box size,

they have significant structure on much smaller scales. This short wavelength structure

is just the accumulation the kinks which, as mentioned above, are produced in great

abundance and decay only very slowly. The .,hort wavelength structure is responsible

for the production of very small loops directly from the long strings and for the tendency

of the large parent loops to split into very small child loops. As a result the loops in

non-self-intersecting trajectories (those that cxn seed galaxies) are very much smaller

than the horizon; there are very few with en_.'rgy > O.l#ct (radius > 0.01#_). This

tends to reduce the energy density of the loop_ with respect to the long strings23 which

implies that the infall of matter into long strix:g wakes 27 will be more important than

had previously been supposed.

11



Another signiflc_nt departure from the standard scenm-io are the relatively large

(;_ 0.5) initial center of mass velocities of the loops in our simulations. Velocities of this

magnitude are not surprising in view of the fact that rrnu --_ 0.7 for the inTmite strings

in our simulation. The loops that form as a result of multiple fragmentations of larger

parent loops might be expected to have even larger velocities because we expect that

these loops will have inherited some of the peculiar motion from each of their ancestors.

These relatively large velocities, coupled with the fact that the mean separation of the

loops at birth is much smaller than the horizon imply that most of the loops will have

moved considerably further than the mean separation in a few expansion times. This has

several important implications for the galaxy formation scenario. A standard premise

of this scenario has been that each string loop of the appropriate size corresponds to

one object: either a galaxy or a cluster. This assumption might still be ok for loops

that are formed long before the universe becomes matter dominated, but loops that are

massive enough to accrete Abel] clusters do not fall into this category.

The remarkable correspondence between the two-point correlation function of Abel]

clusters and the two-point correlation function for string loops found by Turok 2s has

long been regarded as the major success of the cosmic string galaxy formation scenario.

We have computed the loop two-point correlation function in both the radiation and

matter dominated eras, and the results are summarized in Figs. 8 and 9. In each of

o
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Figure 8 Figure 9

these figures, the open circles correspond to the correlation of loops at birth, i.e. their

subsequent displacement was ignored. It is slightly higher than the dashed line which

corresponds to an ?/-2 fit to the cluster data and Turok's results, but the slope is virtually

the same. When we compute instead the correlations between the loops present at a

given time in the simulation box, we obtain the curves labeled by filled circles (at the

end of the run) and solid squares (at an intermediate time). For the matter era run,

12
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these correlations are still in reasona_e pO(!R QUALITY
agreement with the observations, but for the

radiation era our loop correlations are somewhat lower. The reason for the difference

between the "birth" correlation function ant the correlation function at Fixed time is

that much of the loop correlations have bern erased by the loop motion since their

"birth." This effect is much more dramatic if we extrapolate the motion of the loops to

a time sllghty (less than one expansion time) after the end of the run (triangles in Figs.

8 and 9). Now, the correlation function is almost completely washed out. This means

that most of the contribution to the correlation function at a fixed time comes from

loops that have just been formed.

One possible problem with the correlatioI_ functions plotted in Figs. 8 and 9 is that

we have used all the loops in the simulation to calculate the correlation function when,

in fact, many of the smallest loops may be "unphysical" because they are prevented

from fragmenting into still smaller loops only by our limited resolution. To avoid these

potentially "unphysical" loops, we have calc_zlated the two point correlation function

for only those loops that are much larger that_ our lower cutoff. The results turn out to

be virtually the same except that the statisti(:s are much worse. We also tried lowering

the loop center of mass velocities by a factor (f two and found that the correlations still

tended to be washed out (although slightly sl,,wer). We therefore conclude that Figs. 8

and 9 give a reasonably accurate picture of tt_e two-point correlations of string loops.

The implications of these correlations fuI_ctions for the formation of structure are

not entirely clear. The loops that are supposed to be responsible for the formation of

Abell clusters are produced early in the matter dominated era. This means that they

start accreting matter from the moment of birth. The matter accreted will initially form

a long and thin pencil-llke object 29 stretching from the loops initial position to its final

position. The initial positions of the loops would be highly correlated but the final

ones would not. Furthermore, the one loop-one object correspondence of the "standard

scenario" is probably wrong. For instance, Ab,_ll clusters might form at the intersections

of loop trajectories, or a single loop might give rise to several clusters in a line. Another

complication is that the wakes formed by matter falling in behind the long strings 2T are

much more important than had previously be.._n thought. (This is because the scaling

solution energy density in long strings is muci_ larger than in the "standard scenario.")

The implication of all this is that it will be dimcult to tell exactly what type of AbeU

cluster correlation function will be predicted by" cosmic strings without a more detailed

calculation. Although the cosmic string scens:rio's prediction for the Abell cluster two

point correlation function is no longer the clear success that it once seemed, it is clear

13



that cosmic string loops are highly correlated initially and that Abel1 cluster correlations

are much easier to explain in the cosmic string model than with inflationary adiabatic

fluctuations.
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